Bmo Estimates on Vanishing Generalized Morrey Spaces for Commutators of Marcinkiewicz Integrals with Rough Kernel Associated with Schrödinger Operator

نویسنده

  • F. GURBUZ
چکیده

Let L = −∆ + V (x) be a Schrödinger operator, where ∆ is the Laplacian on R, while nonnegative potential V (x) belonging to the reverse Hölder class. We establish the boundedness of the commutators of Marcinkiewicz integrals with rough kernel associated with schrödinger operator on vanishing generalized Morrey spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sharp Function Estimate and Boundedness on Morrey Spaces for Multilinear Commutator of Marcinkiewicz Operator

As the development of singular integral operators, their commutators have been well studied(see [1][3-5][10-12]). Let T be the Calderón-Zygmund singular integral operator. A classical result of Coifman, Rocherberg and Weiss (see [3]) state that commutator [b, T ](f) = T (bf) − bT (f)(where b ∈ BMO(Rn)) is bounded on Lp(Rn) for 1 < p < ∞. In [10-12], the sharp estimates for some multilinear comm...

متن کامل

Adams-spanne Type Estimates for Certain Sublinear Operators and Their Commutators Generated by Fractional Integrals in Generalized Morrey Spaces on Heisenberg Groups and Some Applications

In this paper we consider the Spanne type boundedness of sublinear operators and prove the Adams type boundedness theorems for these operators and also give BMO (bounded mean oscillation space) estimates for their commutators in generalized Morrey spaces on Heisenberg groups. The boundedness conditions are formulated in terms of Zygmund type integral inequalities. Based on the properties of the...

متن کامل

Singular Integrals and Commutators in Generalized Morrey Spaces

The purpose of this paper is to study singular integrals whose kernels k(x; ξ) are variable, i.e. they depend on some parameter x ∈ R and in ξ ∈ R \ {0} satisfy mixed homogeneity condition of the form k(x;μξ1, . . . , μ ξn) = μ − ∑ n i=1 ik(x; ξ) with positive real numbers αi ≥ 1 and μ > 0. The continuity of these operators in L(R) is well studied by Fabes and Rivière. Our goal is to extend the...

متن کامل

Littlewood-Paley Operators on Morrey Spaces with Variable Exponent

By applying the vector-valued inequalities for the Littlewood-Paley operators and their commutators on Lebesgue spaces with variable exponent, the boundedness of the Littlewood-Paley operators, including the Lusin area integrals, the Littlewood-Paley g-functions and g μ *-functions, and their commutators generated by BMO functions, is obtained on the Morrey spaces with variable exponent.

متن کامل

Boundedness criteria for commutators of some sublinear operators in weighted Morrey spaces

In this paper, we obtain bounded criteria on certain weighted Morrey spaces for the commutators generalized by some sublinear integral operators and weighted Lipschitz functions. We also present bounded criteria for commutators generalized by such sublinear integral operators and weighted BMO function on the weighted Morrey spaces. As applications, our results yield the same bounded criteria fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016